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Abstract

Social media platforms are essential for information sharing
and, thus, prone to coordinated dis- and misinformation cam-
paigns. Nevertheless, research in this area is hampered by
strict data sharing regulations imposed by the platforms, re-
sulting in a lack of benchmark data. Previous work focused
on circumventing these rules by either pseudonymizing the
data or sharing fragments. In this work, we will address the
benchmarking crisis by presenting a methodology that can be
used to create artificial campaigns out of original campaign
building blocks. We conduct a proof-of-concept study using
the freely available generative language model GPT-Neo in
this context and demonstrate that the campaign patterns can
flexibly be adapted to an underlying social media stream and
evade state-of-the-art campaign detection approaches based
on stream clustering. Thus, we not only provide a framework
for artificial benchmark generation but also demonstrate the
possible adversarial nature of such benchmarks for challeng-
ing and advancing current campaign detection methods.

Introduction
Constructing machine-learning models that help identify co-
ordinated mis- or disinformation (Wardle 2018) is regarded
as a challenging problem for multiple reasons: first, there
is a lack of available data resulting from a benchmarking
crisis in social media research (Assenmacher et al. 2021).
Platforms restrict data sharing (allegedly) to protect user pri-
vacy or (more probable) to keep their competitive advantage.
Twitter, which is considered one of the more open platforms,
only allows sharing tweet IDs. With knowledge of these IDs,
original posts can be downloaded (also called rehydrated) –
but only if they are available (Twitter 2021). Clearly, this
leads to an ever-changing and, thus, incomparable dataset
due to users and Twitter deleting or restricting content over
time. Second, creators of coordinated disinformation used
advanced technology and developed sophisticated strategies,
making them harder to detect and annotate by external par-
ties. Third, social media data is heterogeneous. Thus, sev-
eral types of campaigns targeting different groups of users
exist (Pacheco et al. 2021; Choraś et al. 2021).

In our understanding, a social media campaign consists
of a coordinated group of users whose activities (such as
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posting, liking, etc.) are connected by a common goal (Lee
et al. 2014). As noted by Ferrara et al. (2016), the definition
of malignant campaigns in this context is more challenging
due to the variety of strategies, motivations, and forms of
user engagement. Except for anecdotal reports, almost no
shareable data on campaigns is available. This leads to a lack
of suitable benchmarking data and the inability to compare
performances of detection algorithms adequately. Although
the problem was identified (Bruns 2019; Pasquetto, Swire-
Thompson, and Amazeen 2021), there is currently only little
progress in methodology for general benchmarking creation
and unified algorithm assessment for campaign detection.

Artificial data that closely reflects core statistics of the
originally observed data do not have to adhere to the plat-
form’s strict data sharing rules; it can be distributed among
researchers. This work presents a new highly flexible frame-
work to create such artificial simulations of disinformation
campaigns. Actual campaigns observed and recorded by ex-
isting campaign detection algorithms and verified by human
annotators are used as a blueprint to recreate realistic cam-
paigns. Moreover, several campaign dimensions can be flex-
ibly adjusted to simulate coordinated actions of manipula-
tors not yet observed. Once a campaign strategy exists, (a)
many different campaign instances can quickly be created,
and (b) shared without violating data-sharing regulations.

The general idea of our new framework can be seen in
Figure 1. Initially, campaigns are detected, recorded, and
analyzed using current detection approaches. Researchers
like Lee et al. (2014) or Varol et al. (2017) already showed
that campaigns follow specific patterns which we will call
stereotypes. These stereotypes can simply be recreated, ad-
justed, or combined into more complex patterns. For exam-
ple, coordinated spam attacks can be made more challeng-
ing to detect by replacing their content with various, more
diverse artificial tweets. Large language models like Genera-
tive Pre-Trained Transformers (GPT) can create meaningful,
realistic tweets, which are often even indistinguishable from
human-written texts (Brown et al. 2020; Fagni et al. 2021).
In a subsequent step, the artificially created campaigns can
be embedded in any social media stream used as under-
lying noise. Since the characteristics of the artificial cam-
paigns can be adjusted through various hyperparameters, re-
searchers can create different benchmarking datasets com-
prising a variety of challenges. A benchmark could simulate
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Figure 1: General concept of benchmark generation.

automated actors (social bots) spreading malicious links to
challenge spam bot detection approaches, while another can
simulate human trolls distributing fake content.

In this work, we instantiate our novel framework using
GPT-generated texts to fill previously identified campaign
stereotypes with meaningful content. This yields two critical
insights. First, from a benchmarking perspective, it can be
confirmed in a proof-of-concept that the proposed approach
is feasible and can be used to evaluate a modern stream
clustering-based method for campaign detection. Second
(and qualitatively), however, the approach also demonstrates
that automatically generated and meaningful content can be
successfully introduced into campaign patterns. At the same
time, this points to significant potential in using this technol-
ogy in the context of malignant communication, thus con-
firming the urgency of evaluating current detection methods
and their limitations under an adversarial regime.

The paper is structured as follows: after discussing related
work, we introduce the framework concept before instanti-
ating it for later experimental evaluation. We conclude with
ethical considerations, discussion, and future perspectives.

Related Work
Social Media Benchmarks Existing benchmarks in cam-
paign detection adhere to strict data sharing rules. For ex-
ample, in the work of Naseem et al. (2021), the influence of
tweets on public sentiment related to COVID-19 is exam-
ined; the authors publish the pseudonymized texts in com-
bination with the sentiment label. In contrast, the social bot
detection dataset by Cresci et al. (2017) only offers the Twit-
ter IDs as well as their label instead of actual user or text
data. However, it was shown that the persistence of Twitter
data over the years subsides so that the benchmark is falsi-
fied when tweets are deleted (Samper-Escalante et al. 2021).

One solution to circumvent data sharing restrictions is to
distribute the data within research groups, like in the Dig-
ital Democracy Lab in Zurich1 or the Social Feed Man-

1https://democracy.dsi.uzh.ch/project/digital-democracy-lab/

ager of the George Washington University2. Exploiting this
principle, the project initiators invite others to join their re-
search team for projects to share the data among more re-
searchers (Gilardi et al. 2021). Another solution is to set up
algorithm competitions on platforms like Kaggle or Codalab
so that the data never leave the realm of the data holder,
but only performance values are shared. Assenmacher et al.
(2021) propose a framework that enables researchers to set
up and host algorithm competitions dynamically. Neverthe-
less, realizing algorithm competitions requires suitable in-
frastructure and sufficient computational resources.

Artificial Data Augmentation Recently, automatically
machine-generated text became more prevalent in vari-
ous natural language processing (NLP) domains such as
abusive language or sentiment detection. Next to easy
data augmentation (EDA) encompassing methods like syn-
onym replacement, random swap, insertion, or deletion, re-
searchers developed sophisticated algorithms for benchmark
creation (Wei and Zou 2019). Calabrese et al. (2021) de-
veloped a new benchmark and evaluation system for hate
speech detection. They use words and structural patterns
predictive of abusive language and incorporate them into
normal posts to generate partly artificial adversarials. With
Polyjuice, Wu et al. (2021) present a fine-tuned GPT-2
model to produce counterfactual examples of textual input
data to improve model generalization in various domains,
while Robeer, Bex, and Feelders (2021) utilize a combina-
tion of a generative adversarial network (GAN) and BERT
encoder. Hartvigsen et al. (2022) use GPT-3 to automati-
cally create adversarials for hate-speech detection, focusing
on creating hard-to-classify implicit abusive content.

In contrast to creating artificial content (i.e., text or im-
ages), the simulation of networks with artificial user nodes
and edges is more common. Xia et al. (2014) developed an
artificial data generator that applies a Poisson process to
create user activities and simulate network behaviors. Bu-
cur and Holme (2020) generate small user networks with
ten nodes for simulating the spread of epidemics. Lotito,
Zanella, and Casari (2021) model the spread of fake news
by considering time-varying engagement and levels of trust.
However, no simulation of manipulation campaigns has
been proposed until now to the best of our knowledge.

Campaign Detection Aiming for campaign detection, so-
cial media data are examined by a plethora of detection algo-
rithms, like user networks, images, or post content (Choraś
et al. 2021), using human-based, purely ML-based, or mixed
strategies (Orabi et al. 2020). Human experts or paid crowd-
sourcing workers are employed to inspect social media data
to detect spam campaigns or simple social bots. However,
this is impossible for sophisticated campaigns. Further, hu-
man inspectors are costly, require more time than an algo-
rithm, and may decrease accuracy for speed (Alarifi, Al-
saleh, and Al-Salman 2016; Cresci et al. 2018).

Different types of ML algorithms were developed e.g.,
(un-)supervised, or adversarial learning (Derhab et al.
2021). Supervised methods like in Pritzkau, Winandy, and

2https://social-feed-manager.readthedocs.io/en/master
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Figure 2: Overview of the proposed benchmarking framework for creating artificial campaigns. While the abstract framework
components are depicted on top, our concrete proof-of-concept instantiation is shown at the bottom.

Krumbiegel (2021) flag posts as being trustable or ille-
gitimate by using a BERT (fine-tuned bi-directional en-
coder representations from Transformers) model. Varol et al.
(2017) use a k-nearest neighbor classifier with dynamic time
warping to deal with time series data. However, these ap-
proaches depend on a large training dataset with unbiased la-
bels, which is hard to obtain in a suitable size (Cresci 2020).
In the unsupervised domain, patterns like synchronized user
behavior or similar texts are identified (Chen and Subrama-
nian 2018). However, if accounts do not behave as antic-
ipated or are heterogeneous, these approaches fail (Cresci
et al. 2019). Adversarial algorithms focus on generating
challenging examples, like the mutation approach by Cresci
et al. (2018). Close evaluation is required to prevent the gen-
eration of implausible scenarios.

Human-in-the-loop approaches rely on the interaction
between human intuition and algorithms. One method is
the two-phase monitoring framework proposed by Assen-
macher et al. (2020b). A continuous textual data stream
is processed and summarized in real-time for topic detec-
tion and rating (w.r.t. importance). Expert users can analyze
suspicious topic patterns based on time-dependent topical
changes through an interactive dashboard. Although com-
putational and human resources are required for monitor-
ing, the approach has been successfully applied during the
Brexit or the German or US governmental elections (Assen-
macher et al. 2020a). Thus, we will use it subsequently to
detect campaigns used as blueprints for artificial recreation.
An overview of more detection algorithms for several types
of campaigns can be found in the works of Choraś et al.
(2021); Orabi et al. (2020) or Da San Martino et al. (2020).

Artificial Campaign Framework
The detailed process of our proposed benchmarking method-
ology is displayed in Figure 2. The process consists of three
main steps: campaign collection, simulation, and detection.

Original Campaign Collection In the collection phase,
the target social media platforms have to be selected. The
framework is agnostic of the concrete detection algorithm
and input data. Selected detection algorithm(s) can then be
applied to the data stream to identify any campaign. Even-

tually, researchers must examine all detected campaigns in
an exploratory data analysis to understand important distri-
butional characteristics such as how many accounts partici-
pated, or which kind of message was spread. Since manipu-
lators supposedly use various strategies to manipulate other
users, several types of campaigns can be collected.

Campaign Simulation The collected campaign character-
istics are used in the second phase to design various artifi-
cial campaigns, e.g., disinformation prior to elections or ma-
licious links promotion with click-baits. As campaign par-
ticipants, either a single or a network of accounts can be
used, which can mimic the behavior of social bots or legit-
imate users. Next to insights from the analysis of the real
campaigns, insights regarding the working principle of the
subsequently used detection algorithm can also be incor-
porated to generate challenging problems. Researchers can
then create artificial campaigns following these configura-
tions. Since campaigns are not executed in isolation but ac-
cordance with other users’ actions, researchers must choose
the basic stream in which the artificial campaign will be in-
serted. Note that only the recreated campaign is artificial; it
is inserted in any static dataset or social media stream con-
sisting of actual posts collected earlier. Thus, conveniently,
the ground truth regarding labeling artificially created cam-
paigns by researchers and others is directly available.

Artificial Campaign Detection The last step of our
framework is to test the performance of campaign detection
algorithms. Hence, researchers do not only gather insights
into the algorithms’ functionality but also reveal opportuni-
ties for improvements. The algorithms used to create artifi-
cial campaigns can be shared without problems and applied
to any problem setting or data. Since campaigns are used as
blueprints that were observed in a social media stream for
the simulation, they closely reflect the real manipulator’s ac-
tions. Nevertheless, it must be noted that it is possible that
other users would react differently to the artificially gener-
ated campaign than they reacted to the original campaign in
a real social network environment. Since the analysis of the
artificial campaign is conducted in hindsight, possible devi-
ating user reactions cannot be simulated realistically.



Framework Instantiation
To instantiate our artificial campaign framework, it is neces-
sary to specify detection methods, the models used to create
the content of the campaigns and the algorithms used to sim-
ulate the users’ actions and behaviors. Since the proposed
framework is flexible w.r.t. the instantiation of each step, we
evaluate a concrete setup in this study.

Stream Clustering for Collecting Campaigns
For campaign detection, we rely on an unsupervised human-
in-the-loop approach proposed by Assenmacher et al.
(2020b). The tool is built upon the idea of monitoring the
outputs of a stream clustering technique called textClust
to identify homogeneous groups of potentially coordinated
topics in an unbounded textual data stream. The algorithm
was initially proposed in 2017 (Carnein, Assenmacher, and
Trautmann 2017) but was recently updated and bench-
marked on various Twitter datasets (Assenmacher and Traut-
mann 2022). textClust utilizes a TF-IDF cluster repre-
sentation which is updated incrementally to deal with dis-
tributional changes (concept drifts). Therefore, the whole
clustering process is separated into two phases. Within the
online phase, incoming observations are continuously clus-
tered into statistical summaries called micro-clusters. Due to
concept drifts, they can change over time, i.e., can become
more important by incorporating new observations or less
important if they are not updated anymore. Each time a new
text is assigned to an existing cluster, its weight, i.e., its im-
portance, is increased. On the contrary, if a cluster is not fre-
quently updated, the weight is decreased according to an ex-
ponential fading function. Within Figure 3a, one example of
the changing micro-cluster weight over time is reflected by
the unmodified micro-cluster Co. In the second offline phase
of the algorithm, a snapshot of micro-clusters can be used at
any specific point in time to asynchronously re-cluster them
using traditional clustering techniques.

Generative Language Models for Simulation
Generative language models compute a probability distribu-
tion over sequences of tokens to predict future words, given
the previous token in the sequence. State-the-art models are
based on the Transformers architecture defined by Vaswani
et al. (2017). Previously, primarily convolutional neural net-
works (CNNs) or recurrent neural networks (RNNs) were
used for natural language generation (NLG) tasks. How-
ever, these models only consider signals from close input
or output positions, i.e., examine a narrow word neighbor-
hood (Wolf et al. 2020). In contrast, Transformers utilize
the attention mechanism that draws global dependencies
between input tokens since, in natural language, coherent
words may not occur consecutively (Vaswani et al. 2017).

OpenAI developed GPT models from 2018 onward,
which are based on the decoder part of the Transformer ar-
chitecture (Radford et al. 2018). The latest version, GPT-3
by Brown et al. (2020), outperformed other language models
by the time of its publication. Short texts generated by GPT
models are nearly indistinguishable from human-written
texts (Ippolito et al. 2020). Nevertheless, the model is not

freely available, and researchers must pay for each generated
token. Therefore, EleutherAI developed GPT-Neo, a freely
available version. It was trained on donated computational
power using a dataset called The Pile, an 825-gigabyte En-
glish text corpus (Gao et al. 2020). EleutherAI reports that
it shows similar performance to GPT-2 and only slightly
worse performance than GPT-3 in NLG (EleutherAI 2022).

There are several other models available for NLG, for ex-
ample the MAGMA model – Multimodal Augmentation of
Generative Models through Adapter-based Finetuning – de-
veloped by Aleph Alpha (Eichenberg et al. 2021), Turing-
NLG (T-NLG) by Microsoft (2020), and the Text-To-Text-
Transformer (T5) developed by Raffel et al. (2020). How-
ever, since GPT-3 achieves the best performance on various
NLG tasks and GPT-Neo is slightly worse and freely avail-
able, we decided to use GPT-Neo.

Generation of Simulated Campaigns

We create artificial campaigns in which GPT-Neo-
generated tweets are inserted by mimicking the actions of
disinformation spreaders (Figure 3a). We assume that ma-
nipulators try to promote their opinions on social media by
managing multiple user accounts in parallel. As these coor-
dinated accounts send coherent content, they are grouped in
one cluster, leading to an increase in cluster weight observ-
able in the monitoring tool. Thus, depending on how many
coordinated users Ui participate, their aggregated actions
determine the resulting micro-cluster pattern Ca. However,
their actions are not examined in isolation but are assumed
to be embedded in an original, content-related, and unmod-
ified micro-cluster Co emerging from the actions of other
users. Thus, the shape and the volume of Co influence the fi-
nal trend of the resulting micro-cluster C, as can be seen on
the right in Figure 3a. Researchers using our framework can
determine the aggregated user actions Ca, while the basic
micro-cluster Co is created by the actions of other users and
the stream clustering algorithm and cannot be influenced.

Consequently, the resulting pattern of the artificial cam-
paign as displayed in the monitoring tool mostly depends on
how the actions of single users are simulated, as can be seen
in Figure 3b: basically, for each user Ui, we define the du-
ration di and the submitted text volume ti of his action. For
example, a high ti and a short di will lead to a sharp increase
in cluster weight, while a high ti and a long di will result in a
moderate increase. Additionally, the final increase level de-
pends on the subjacent stream S in which the campaign is
inserted: first, the more users produce similar content, the
more likely the stream clustering algorithm will assign these
posts and the artificial posts to the same cluster. Second, the
more active other users are, the higher the cluster weight in-
crease and vice versa. In contrast, the weight decrease can
only indirectly be influenced by stopping the posting ac-
tivities of simulated users. Then, the decrease depends on
S and the fading configuration of the clustering algorithm.
However, note that the exact shape of S is unknown, and
thus, modeled as a blue shaded box in Figure 3b. A comple-
menting trend of S may blur the artificial campaigns’ pattern
when many users post on a similar topic and vice versa.
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Figure 3: Composition of the cluster trend depending on the participating user’s actions and the stream clustering algorithm.

Framework Evaluation
After we instantiated our flexible framework with specific
detection algorithms and content creation models, we as-
sessed our setup and the framework’s general capabilities.

Experimental Setup
We used the Twitter API academic access for streaming
one percent of climate change-related tweets in real-time.
The topic is polarizing, heavily discussed online, and, thus,
likely to be targeted by disinformation campaigns (Pro-
rokova 2020). These hashtags were used to filter the stream:

• Climate change: climate climateChange climateCrisis
climateAction actOnClimate climateChangeIsReal glob-
alWarming saveTheEarth saveThePlanet thereIsNoPlan-
etB climateEmergency climateJustice

• Climate change denial: climateLies climateDenial cli-
mateSceptics climateHoax

• Movements: fridaysForFuture fridays4future fffUnited-
States studentsForFuture students4future parents4future
parentsForFuture extinctionR greenpeace wwf

• People: gretaThunberg sophiaMathur

We collected 3.6 million tweets from 1/10/2021 un-
til 7/11/2022. To identify malicious campaigns, we used
the previously described monitoring tool by Assenmacher
et al. (2020b). Based on reported experiences (Assenmacher
et al. 2020a; Assenmacher and Trautmann 2022), we used
textClust with its standard configuration, i.e. automatic
distance threshold adaption; we set the fading factor λ to
0.01, and generated uni- and bi-grams during preprocessing.

To generate artificial tweets, we used the 1.3 billion
parameter version of GPT-Neo (Black et al. 2021) as
implemented in the Hugging Face Transformers library3.
As GPT-Neo did not receive any social media data dur-
ing its pre-training, we fine-tuned the default model with
our collected tweets. It received the data in the format
<username> <tweet>within a single field separated by
a space for learning to create tweets similar in sentiment and
content to original user’s tweets. Since, on average, in the
dataset are only 400 tweets per user, GPT-Neo does not
mimic each user’s style perfectly but learns the general prob-
ability distribution of tweets. We used an 80/20 train/test

3https://huggingface.co/docs/transformers/index

split, and to differentiate distinct tweets, we added a start-
of-tweet and an end-of-tweet token to the training dataset.
We fine-tuned the model on a Nvidia A100 (40GB) for five
epochs with a batch size of 112. The fine-tuned is freely ac-
cessible as Hugging Face model repository4.

Since GPT-Neo has a variety of parameters, we con-
ducted a small pre-study to find a suitable model configu-
ration. Following the advice in the guidelines by OpenAI
(2021) and von Platen (2020), we selected the parameters
temperature, top-k, and the repetition penalty for configura-
tion. Through scaling the raw predictions (logits), the tem-
perature controls the output’s randomness. We tested the
configurations 0.7, 0.8, and 0.9. The parameter top-k influ-
ences the width of the probability mass, which in turn in-
fluences the temperature: only the fixed number of top-k
tokens is considered so that the probability mass is redis-
tributed. We checked the values 50 and 150. Lastly, the rep-
etition penalty determines whether the model can repeat to-
kens multiple times. We test its effect by applying it with a
parameter value of 2 and by deactivating it with a value of 1.

To test how our fine-tuned GPT-Neo model can reflect
specific users’ tweets, we selected a climate change denier as
test subject, since, due to the distinct opinion, it is straight-
forward to check whether GPT-Neo can match it. For each
configuration, we generated 1 000 tweets. In a first statisti-
cal evaluation, we tested the general tweet characteristics,
i.e., the number of user mentions, inserted URLs, and the
average length. Second, we asked two human ML experts to
manually verify whether the tweet’s content is logical, co-
herent, and matches the climate change denier’s opinions.

Using human experts to assess the quality of machine-
generated texts e.g. was done in by Hartvigsen et al. (2022),
where annotators evaluated whether the automatically gen-
erated toxic language presents a potential harm to readers.
Nevertheless, the automatic evaluation of artificially gen-
erated data without human annotators remains an impor-
tant future work endeavor. Established NLP metrics such
as BLEU (Papineni et al. 2001), ROUGE (Lin 2004) or
BERTScore (Zhang et al. 2019) come with their own lim-
itations: as they capture the token agreement (based on n-
grams or semantic word/sentence embeddings), they are not

4https://huggingface.co/Nijana/gpt-neo-1.3B-
climate change tweets/tree/main
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Figure 4: Schematic display of the three different patterns
that were identified by analyzing manipulation campaigns.

suitable to verify whether the produced content matches the
users’ opinions. Thus, in the context of this study, we only
rely on the manual assessment by human annotators.

We decided on closely simulating one campaign of each
stereotype we observed in our data for the final campaign
creation, i.e., to adopt the number of participants, submit-
ted tweets, and duration. To assess the effect of the au-
tomatically mass-generated tweets in detail, we only re-
placed the monotonous tweets of the original campaigns
with GPT-Neo-generated tweets.

Results
The results of each phase of our proposed framework will be
discussed next: the original campaign collection, the simula-
tion with a fine-tuned and configured GPT-Neo model, and
the recreation of the campaigns to test competitive detection
algorithms. The results of each study will be discussed next.

Original Campaign Collection We identified campaigns
by focusing on examining the change of textClust’s
cluster weights over time visually in the human-in-the-loop
monitoring tool. Since each cluster represents different top-
ics discussed in the stream, a rapid weight change indi-
cates the automated activity or unusual behavior. Further
proof was given by accompanying metrics displayed, e.g.,
the tweet-per-user ratio or the analysis of the content. Us-
ing this approach, we identified ninety campaigns during the
thirty-seven days of data collection, fifty of which were ma-
licious. Most non-malignant campaigns were created by be-
nign flight trackers, weather, or news bots. Some were also
false positives, like the announcement that the British Queen
would not attend the UN climate conference. The news cre-
ated a sharp increase in tweet activity but was organic in its
origin since triggered by a real-world event.

Overall, we identified three stereotypical campaign pat-
terns, which can be inspected in Figure 4. The first consists
of a single peak created by the synchronized tweet activities
of several accounts within a short time. Although there are
some varieties, for example, the steepness of the increase or
the number of participants, thirty-three of our fifty malicious
campaigns followed this general pattern. The second stereo-
type consists of two or three consecutive peaks created by
stop-and-go tweeting activities. We collected twelve cam-
paigns in this category. Lastly, stereotype three consists of
a sharp increase in activity with prolonged posting behavior
over hours. Due to the decreasing intensity of the activities,
the decrease in cluster weight happens gradually. Organic
campaigns triggered by a real-world event often follow this
pattern, but we also found five malicious campaigns.

Campaign Simulation Using GPT A first inspection of
the 12 000 tweets generated for testing configurations re-
veals that GPT-Neo generally captured the climate change
denier’s style and sentiment well. In Table 1, we provide
original tweets on the left, next to variations on the right5.

Original GPT-Neo
@GretaThunberg There is
Zero proof there is a climate
crisis ZERO PROOF Just
another fabricated emergency
to fleece the sheep

@GretaThunberg There is
Zero proof there is a climate
crisis ZERO PROOF Just
another fabricated emergency
to strip you of your rights

@user @globalnews Ya, SO
??? None of your business !
Climate Change is a SCAM,
just like your Fake Pandemic

@user No one is buying the
climate crisis Climate change
hoax is the next Covid

@GretaThunberg She wont
recover, her mind has
SNAPPED

@GretaThunberg What a
hypocrite. All she does is lie
and manipulate people

Table 1: Examples of original stream (left) and topic-related
GPT-Neo-generated tweets (right).

The model generally reflects the opinion of the climate
change denier we used as a test subject: it uses user men-
tions, and some words are written in upper case, just like
in the originals. The result of the first study we conducted
by automatically checking tweet characteristics can be seen
in Table 2. The climate change denier did not append any
URLs to the tweets, while GPT-Neo added randomly gen-
erated URLs to some. GPT-Neo probably adds URLs since
in the fine-tuning dataset, URLs are attached to many tweets,
and the model infers knowledge from those as well. The dif-
ference between tweets generated with a repetition penalty is
apparent to those created without (i.e., a configuration with
the values 1 and 2, respectively): tweets without repetition
penalty contain URLs in approximately 2 % to 5 % of cases,
while tweets with repetition penalty contain links in 10 %
to 15 % of cases. Moreover, in each tweet without a repeti-
tion penalty, approximately two users are mentioned with a
standard deviation between 1.5 and 2.4, while it is merely
one user with a very low standard deviation (< 0.09) in the
tweets with a repetition penalty. There, tweets are less than
135 characters long with a standard deviation of 77, whereas
the tweets without repetition penalty are, on average, longer
than 150 characters with a standard deviation of 55. Nev-
ertheless, most artificial tweets are shorter than the original
ones. However, while the effect of the repetition penalty can
be seen, no such clear result emerges for the parameters tem-
perature and top-k. Nevertheless, since the repetition penalty
affects GPT-Neo to create shorter tweets with fewer user
mentions and more URLs, we exclude these configurations
from further consideration.

Next, we manually inspected each tweet of the remaining
configurations to check the percentage of tweets being il-

5More examples can be found on GitHub: https://github.com/
JaninaPohl/artificialcampaigns



Configuration Perc. URLs Avg. mentions Avg. length
Original 0.000 2.129 180.574
0.7 / 50 / 1 0.024 2.118 161.428
0.8 / 50 / 1 0.031 2.141 154.719
0.9 / 50 / 1 0.054 1.974 154.954
0.7 / 150 / 1 0.019 2.262 163.375
0.8 / 150 / 1 0.042 1.994 157.023
0.9 / 150 / 1 0.053 1.945 154.590
0.7 / 50 / 2 0.138 1.004 134.231
0.8 / 50 / 2 0.123 1.005 115.021
0.9 / 50 / 2 0.119 1.003 119.110
0.7 / 150 / 2 0.136 1.004 132.957
0.8 / 150 / 2 0.147 1.003 114.350
0.9 / 150 / 2 0.105 1.002 120.432

Table 2: Percentage of URLs per tweet, the average number
of mentions, and the average length of GPT-Neo-generated
tweets per configuration in the format temperature / top-k /
repetition penalty.

Configuration Reflect opinion Logic/coherence Both
Original 0.000 0.000 0.000
0.7 / 50 / 1 0.016 0.018 0.030
0.8 / 50 / 1 0.012 0.023 0.029
0.9 / 50 / 1 0.037 0.040 0.059

0.7 / 150 / 1 0.012 0.019 0.032
0.8 / 150 / 1 0.012 0.019 0.028
0.9 / 150 / 1 0.030 0.024 0.046

Table 3: Percentages of tweets not reflecting the climate
change denier’s opinion or being nonsensical for each re-
maining configuration in the format temperature / top-k.

logical or reflecting another opinion than the climate change
denier’s. Results are shown in Table 3. Notably, the number
of unusable tweets is relatively low for all configurations;
the worst result is five percent for the configuration 0.9 /
150. However, note that GPT-Neo had slightly more sig-
nificant problems generating logic and coherent tweets than
reflecting the user’s opinion. When examining the column
values more closely, it can be seen that the influence of the
top-k value is not strong; the percentages of faulty tweets are
mostly slightly lower for a top-k value of 150 than for a value
of 50. Differences between the temperature values of 0.7 and
0.8 are not severe, just 0.5 % in the worst case. The indi-
vidual percentages of 0.8 are slightly higher. Though, when
considering the overall value, the configuration with a top-k
of 0.7 performs worse. Nevertheless, there are more unus-
able tweets created with a temperature of 0.9. Consequently,
the configuration of the fine-tuned GPT-Neo model used in
this work will include a top-k value of 150 and a temperature
of 0.8. No repetition penalty will be applied since this leads
to significantly shorter tweets. With this parameter config-
uration, GPT-Neo created meaningful tweets reflecting the
original user’s style and content with a high probability.

For each of the identified stereotypes, we recreated one
campaign artificially. The original cluster trend can be seen
in the upper part of Figure 6. We selected a network of
120 seemingly legitimate user accounts posting news head-

Stereotype I

Stereotype II

Stereotype III

0 10 20 30 40 50 60 70 80 90 100
Number of artificial micro−clusters

Figure 5: Analysis of the number of clusters textClust
distributes the artificial campaigns into.

lines in combination with a corresponding link for the first
stereotype. Supposedly, the network should increase traffic
to the news agency’s website. Stereotype two was generated
by a group of three accounts tweeting two hundred similar
messages for approximately one-and-a-half hours. The user
accused several news agencies of not reporting on illegal
climate-damaging projects on protected Native land in the
USA. Lastly, we chose a group of 160 accounts targeting Joe
Biden’s Twitter account for the third stereotype to urge him
to hold on to certain projects despite missing support from
the US senate. We recreated each campaign by copying the
parameters but replacing the original tweets with ones gen-
erated with our fine-tuned and configured GPT-Neo model.

Artificial Campaign Detection The result of the recre-
ation can be seen in the lower part of Figure 6 with the pat-
tern of the recreated campaign plotted in red, while other
clusters in which textClust also distributes artificial
tweets plotted in light red. The observed sharp cluster spikes
are not prevalent anymore, implying that textClust does
not assign the generated tweets to the same cluster but dis-
tributes them over multiple ones. Hence, human experts
would not be able to identify these artificial campaigns by
monitoring the cluster weight’s change over time anymore.

In the bottom-left plot, it can be seen that textClust
distributed the artificial tweets over three clusters. For clar-
ity, we do not show all clusters into which the stream clus-
tering algorithm has distributed the artificial tweets. Instead,
in the boxplots in Figure 5, an overview of the number
of clusters containing artificial tweets per campaign can be
seen. Depending on the stereotype, textClust integrates
the GPT-Neo-generated tweets into 26 – 90 different clus-
ters. For stereotype three and especially for stereotype one,
textClust distributes the tweets over more clusters than
stereotype two. This is related to the fact that our fine-tuned
GPT-Neo model uses the participating users as a blueprint.
Since the campaigns were created by networks of accounts
instead of small groups for stereotypes one and three, the ar-
tificial campaign’s content is more heterogeneous. Although
GPT-Neo catches the user’s style, the variety of all tweets
created by one user is high. Thus, it might be more real-
istic in the future to use a model fine-tuned for creating
different topics instead of mimicking single users to create
more coherent campaigns created by a network of accounts.
Nevertheless, textClust was also unable to group the
tweets belonging to stereotype two into one cluster, which
was generated by only a few users and, thus, is more coher-
ent content-wise. Overall, the tweets created with GPT-Neo
are too heterogeneous content-wise and currently impede
textClust’s ability to retrieve the original clusters.



0

50

100

07:00 08:00 09:00
Stereotype I

C
lu

st
er

 W
ei

gh
t

0

25

50

75

14:00 15:00 16:00 17:00
Stereotype II

C
lu

st
er

 W
ei

gh
t

0

20

40

60

20:00 21:00 22:00
Stereotype III

C
lu

st
er

 W
ei

gh
t

0

50

100

07:00 08:00 09:00
Stereotype I

C
lu

st
er

 W
ei

gh
t

0

25

50

75

14:00 15:00 16:00 17:00
Stereotype II

C
lu

st
er

 W
ei

gh
t

0

20

40

60

20:00 21:00 22:00
Stereotype III

C
lu

st
er

 W
ei

gh
t

Figure 6: Artificial data augmentation impact on micro-cluster weights. Above, the original campaigns are displayed while their
recreated counterparts are below with clusters in which artificial tweets are grouped into by textClust plotted in light red.

Ethical Considerations
In theory, malicious campaigns created automatically can be
shared without violating data-sharing regulations introduced
by social media platforms. However, even for these artifi-
cial contents, privacy considerations are essential. First, a
failsafe must be implemented to prevent GPT from repro-
ducing tweets as they originally occurred. Here, finding a
balanced GPT-Neo configuration that generates more het-
erogeneous but meaningful tweets helps in reducing iden-
tity projections. Second, real users may be mentioned within
the artificial tweets as the fine-tuned model learned from the
original data. Thus, implications on individuals or organiza-
tions implicitly mentioned in the textual data may be drawn
that have to be handled with care. Therefore, the artificially
created campaigns that we used in this study are published
together with some original examples in a pseudonymized
form6. Third, the adversarial approach of benchmarking in-
volves an ethical trade-off: by confronting state-of-the-art
campaign detection with new challenges, their development
can indeed be pushed forward. At the same time, the adapted
and fine-tuned language models can be used for the gen-
eration of malignant campaigns themselves. Therefore, the
benefits to the research community and the potential risks
of publication must be carefully weighed when publishing
either models or details about the training process.

Discussion and Future Works
We have developed a new, flexible pipeline that allows us to
enrich social media data streams with artificial campaigns.
Since these are based on real events that we use as blueprints
and mimic real users’ posts, our the artificial campaigns
within our framework reflect the original ones closely. Fur-
ther, the flexible approach can also be altered to create more
challenging settings. Meanwhile, we gained insights into
campaign executions that can be used in future works to
develop more robust detection algorithms, e.g., improving
our selected detection approach, since it could not recognize

6https://github.com/JaninaPohl/artificial campaigns

GPT-Neo-generated campaigns. Our methodology can be
used to create artificial campaigns automatically, the initial
data and campaign collection, analysis, and implementation
are laborious, requiring more effort than streaming a dataset
from an API. Although the campaigns themselves are recre-
ated as realistic as possible, real users’ reactions to this cam-
paign cannot be modeled. In future works, self-hosted social
networking services like Mastodon7 might be used to create
social media instances populated with users who agreed to
participate in such artificial campaign experiments.

Also, a systematic and objective evaluation of GPT’s abil-
ity to generate realistic tweets is required. We assessed the
artificial tweets by examining specific features and manu-
ally inspecting their logic and coherence. As standard NLG
metrics do not cover the criteria needed, in future works,
a large-scale study needs to be designed that, for example,
consults a larger expert group for inspection. Additionally,
other types of data, campaigns, and detection approaches
must be tested in future works to validate the framework’s
capabilities further. We revealed shortcomings of the moni-
toring tool we used to identify campaigns and especially the
clustering algorithm textClust. Since, supposedly, the
reason for failure is the algorithm’s focus on similar words
instead of synonymous words, using another word embed-
ding approach or similarity measure might overcome this
shortcoming. For example, the soft cosine similarity uses a
lexicon to incorporate the meaning of words into the dis-
tance calculation. Further, the monitoring tool can be ex-
tended by models to identify artificially generated tweets.
However, the overload of training and updating these models
must be pondered to the benefits these metrics must provide
since the main advantage of the tool is its ability to display
relevant information in real-time, possibly enabling moder-
ators to counteract the detected campaign instantly. Being
able to detect and possibly react to modern mis- and disin-
formation campaigns becomes a more and more pressing is-
sue as more and more interpersonal interactions have shifted
from the real world to the online ecosystem.

7https://mastodon.social
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Ksieniewicz, P.; Remoundou, K.; Urda, D.; and Woźniak,
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